Survey of Aerothermal Modeling Needs for Future Planetary Probe Missions

Where Have We Been?

NASA Ames Research Center Reacting Flow Environments Branch **Flight** Agency **Entry Date** Destination **Result** α (km/s)(deg) Comm. Venera 3 **USSR** Mar. 1966 ~11 Venus 0 Failure **USSR** Oct. 1967 ~11 Venera 4 Venus Success. **NASA** Apollo 4 Nov. 1967 Earth 10.7 **Success** Mars 2 **USSR** Nov. 1971 Mars ~6 0 Failure • NASA Jul/Sep. 1976 Viking I & 2 Mars 4.5 11 Success Pioneer Venus NASA Dec. 1978 Venus 11.5 0 **Success** (4 probes) Vega 1 & 2 **USSR** Jun. 1985 Venus 11.5 **Success** 0 NASA Galileo Dec. 1995 Jupiter 47.4 **Success** 0 Pathfinder **NASA** Jul. 1997 Mars 7.5 Success-0 Rocket **MPL NASA** Dec. 1999 Mars 0 Failure DS-2 **NASA** Dec. 1999 Mars 6.9 0 Failure Beagle ESA Dec. 2003 Mars 5.4 0 Failure 5.6 MER-A **NASA** Jan. 2004 Mars 0 **Success** MER-B NASA Jan. 2004 Mars 5.6 0 Success **Parachute** NASA 11 Genesis Sep. 2004 Earth 0 **Failure ESA** Jan. 2005 6.5 Huygens Titan Success 0 Stardust NASA 12.6 Jan. 2006 Earth Success~ 0 9 other successful Venus entries 5 other failed Mars entries

MJW - 2

Where Are We Going?

NASA Ames Research Center Reacting Flow Environments Branch ➤ Active Mars Exploration Program Launch opportunities every two years • Scheduled: Phoenix (2007), MSL (2009), Scout AO (2011) Solar System Exploration (Decadal Survey) Jupiter Polar Probes – Neptune Probes ——— Return to Venus Lunar/Comet/Asteroid Sample Return • Titan Exploration (rovers, balloons, airplanes) Saturn Probes? ➤ Vision for Space Exploration • Return to the Moon (CEV), eventually to Mars • Emphasis on technology demonstration, human precursor missions > Aerocapture as a Propulsion Alternative

• Significant mass savings are possible for many destinations

• Use aerodynamic deceleration in lieu of propellant to capture into orbit

Why is Aerothermal Modeling Important?

VASA Ames Research Center

Reacting Flow Environments Branch

- Heat flux (with pressure & shear) used to select TPS material
- Heat load determines TPS thickness

Can't we just 'cover up' uncertainties in aerothermal modeling with increased TPS margins?

- > Sometimes, <u>but</u>:
 - Margin increases mass; ripple effect throughout system
 - Without a good understanding of the environment risk cannot be quantified; benefits
 of TPS margin cannot be traded with other risk reduction strategies
 - Margin cannot retire risk of exceeding performance limits
 - For some missions (i.e. Neptune aerocapture, Jupiter polar probe), improved aerothermal models may be *enabling*

Can't we retire all uncertainties via testing?

- **≻** No!:
 - No ground test can simultaneously reproduce all aspects of the flight environment.
 A good understanding of the underlying physics is required to trace ground test results to flight.
 - Flight testing too expensive for anything other than final model validation

CFD Process for Planetary Probe Design

NASA Ames Research Center

Reacting Flow Environments Branch

- ➤ Advances in parallel computing, efficient implicit algorithms have enabled rapid turnaround capability for complex geometries
 - Full three dimensional CFD is an integral part of all planetary probe TPS design
- ➤ Modeling gaps are physics driven; mission specific
 - Physical models employed are by and large based on 20-30 year old methodologies

Aerothermal Modeling Needs

NASA Ames Research Center

Reacting Flow Environments Branch

- **≻**Reacting Flow Physics
- > Radiative Heating
- > Transition and Turbulence
- **≻**Coupling Effects
- > Afterbody Heating
- >Unsteady Separated Flows

MJW - 6

Reacting Gas Flow Physics

Current Status and Identified Gaps

NASA Ames Research Center

Reacting Flow Environments Branch

➤ Chemical Kinetics and Thermal Nonequilibrium Models

 developed for Earth entries; applied other destinations with minimal validation

developed for low ionization levels;
 applicability for fast entries (e.g. giant planets) not well known

>Surface Kinetics

- catalysis and surface recession have a huge effect on heat transfer
- validated models for non-Earth entries do not exist; bounding (possibly very conservative) models are employed

○ Models are required for all of these processes to accurately predict net heat transfer

Turbulent Heating and Transition

Status and Remaining Gaps

NASA Ames Research Center

Reacting Flow Environments Branch

- Leeside turbulent heating recently identified as an issue for lifting blunt cones
 - current uncertainty > 50%, poorly defined
- > Other turbulence mechanisms become important for mid to high L/D geometries
- > Blowing/roughness dominated transition will be crucial for ablative TPS systems
 - models are configuration/material dependent
 - existing models require validation
- Turbulent heating remains a design driver for large entry systems
 - No flight validation for non-Earth entries

Mars Science Laboratory **Peak Heating Condition**

CFD Comparison to T5 Test

Radiative Heating

Status and Remaining Gaps

NASA Ames Research Center

Reacting Flow Environments Branch

- > Radiative heating predictions have the highest uncertainties of all heating modes
 - analysis predicts that radiation will dominate aeroheating for Titan, outer planets, and large vehicles at Venus & Mars
 - radiation can be strongly coupled to flowfield
 - detailed models exist only for Earth
- Huygens entry spurred interest in Titan radiation
 - several models in literature; Titan probably better understood than all solar system targets other than Earth
 - additional work is required to reduce remaining uncertainties
- Shock tube data used to improve existing models
 - recent testing performed for Titan (ISP, 2004), Mars (ISP, 2006), and Earth (CEV, 2006)
 - results for planetary bodies to be discussed at workshop in Sep.
- ➤ No non-Earth flight data exist
 - Huygens carried no heatshield instrumentation
 - Galileo, PV data insufficient to determine radiative heating levels
- Collisional-radiative models are required for all planets

Sample EAST Dataset

CN Radiation Model Validation

Final Model Validation: Flight Data and Recovered Hardware

NASA Ames Research Center

Reacting Flow Environments Branch

- ➤ Instrumenting science missions is the best way to obtain model validation data for follow on probes
 - Recent trend away from heat shield instrumentation must be reversed; next opportunity is MSL (2009)
- ➤ In flight observation (e.g. Stardust) can be valuable, but only possible at Earth
- Post-flight hardware inspection can be useful for model deficiency identification (e.g. Apollo coking)
 - Hardware recovery can be difficult to impossible
 - Cannot give temporal information

Genesis Heatshield

Stardust Capsule

June 29 2006

Conclusions and Recommendations

NASA Ames Research Center

Reacting Flow Environments Branch

- > Most of our aerothermal models were developed for Earth and applied to other destinations with minimal validation
- Challenging destinations include all gas giants, Venus and large payloads at Mars
- > Three major priorities show up across multiple destinations
 - Shock layer radiation, including coupling effects
 - Turbulent heating and transition
 - Gas-surface interaction, including catalysis
- ➤ Improvements to aerothermal models will have a significant payoff in terms of entry risk quantification and system mass savings
 - Better understanding of entry risks will enable more informed system trades
 - Aerothermal model improvements may enable a new generation of ambitious science missions
- > Flight data are required to validate models for non-Earth entries
 - Much can be gained by instrumenting science missions

Backup

Afterbody Heating

Status and Remaining Gaps

NASA Ames Research Center

Reacting Flow Environments Branch

- > Current uncertainty levels assumed 50-300%
 - Impacts backshell TPS selection and mass
- > Physics drivers include turbulence, unsteadiness, rarefaction, and RCS interaction effects
- > Limited validation with flight data for Earth (Apollo) and Mars (Venus) entries
 - Good agreement with Earth data, CFD significantly underpredicts Viking heating
- **○** More work required for the range of entry missions
 - non-Earth destinations
 - open backshells (fluid-payload interactions)

AS-202 Backshell Oilflow

Flowfield/Radiation/Ablation Coupling

Status and Identified Gaps

NASA Ames Research Center

Reacting Flow Environments Branch

- Coupling can have a major impact on net heating and ablation rates
- Loosely coupled radiation methodology has been demonstrated
 - Stardust design, Fire-II post-flight analysis
 - Intractable for strongly coupled flows (outer planets, Venus)
- Ablation coupling models under development
 - Ablation product blockage of radiation is not well characterized
 - Required rates are material and environment dependent; most not known

For this type of environment, coupled solutions are *required* to obtain reasonable aeroheating predictions and to make informed TPS decisions

